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Abstract

The recent emergence of a novel coronavirus (2019‐nCoV), which is causing an

outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is

another warning of the risk of CoVs posed to public health. In this minireview, we

provide a brief introduction of the general features of CoVs and describe diseases

caused by different CoVs in humans and animals. This review will help understand

the biology and potential risk of CoVs that exist in richness in wildlife such as bats.
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1 | INTRODUCTION

Coronaviruses (CoVs) are important pathogens for human and ver-

tebrates. They can infect respiratory, gastrointestinal, hepatic, and

central nervous system of human, livestock, birds, bat, mouse, and

many other wild animals.1–3 The outbreaks of the severe acute re-

spiratory syndrome (SARS) in 2002/2003 and the Middle East re-

spiratory syndrome (MERS) in 2012 have demonstrated the

possibility of animal‐to‐human and human‐to‐human transmission of

newly emerging CoVs.4,5 An outbreak of mystery pneumonia in

Wuhan since December 2019 has been drawing tremendous atten-

tion around the world. Chinese government and researchers have

been taking swift measures to control the outbreak and conduct the

etiological studies. The causative agent of the mystery pneumonia

has been identified as a novel coronavirus (nCoV) by deep sequen-

cing and etiological investigations by at least five independent la-

boratories of China (http://virological.org/ and https://www.gisaid.

org/). On 12 January 2020, the World Health Organization tem-

porarily named the new virus as 2019 novel coronavirus (2019‐

nCoV). The sporadic emergence and outbreaks of new types of CoVs

remind us that CoVs are a severe global health threat. It is highly

likely that new CoV outbreaks are unavoidable in the future due to

changes of the climate and ecology, and the increased interactions of

human with animals. Thus, there is an urgent need to develop ef-

fective therapies and vaccines against CoVs.

2 | CORONAVIRAL GENOME STRUCTURE
AND REPLICATION

CoVs belong to the subfamily Coronavirinae in the family of Cor-

onaviridae of the order Nidovirales, and this subfamily includes four

genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Del-

tacoronavirus (Figure 1A). The genome of CoVs is a single‐stranded
positive‐sense RNA (+ssRNA) (~30 kb) with 5′‐cap structure and

3′‐poly‐A tail. The genomic RNA is used as template to directly

translate polyprotein 1a/1ab (pp1a/pp1ab), which encodes non-

structural proteins (nsps) to form the replication‐transcription complex
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(RTC) in a double‐membrane vesicles (DMVs).6 Subsequently, a nested

set of subgenomic RNAs (sgRNAs) are synthesized by RTC in a manner

of discontinuous transcription.7 These subgenomic messenger RNAs

(mRNAs) possess common 5′‐leader and 3′‐terminal sequences.

Transcription termination and subsequent acquisition of a leader RNA

occurs at transcription regulatory sequences, located between open

reading frames (ORFs). These minus‐strand sgRNAs serve as the

templates for the production of subgenomic mRNAs.8,9

The genome and subgenomes of a typical CoV contain at least six

ORFs. The first ORFs (ORF1a/b), about two‐thirds of the whole genome

length, encode 16 nsps (nsp1‐16), except Gammacoronavirus that lacks

nsp1. There is a −1 frameshift between ORF1a and ORF1b, leading to

production of two polypeptides: pp1a and pp1ab. These polypeptides

are processed by virally encoded chymotrypsin‐like protease (3CLpro) or

main protease (Mpro) and one or two papain‐like protease into 16

nsps.10,11 Other ORFs on the one‐third of the genome near the 3′‐
terminus encodes at least four main structural proteins: spike (S),

membrane (M), envelope (E), and nucleocapsid (N) proteins. Besides

these four main structural proteins, different CoVs encode special

structural and accessory proteins, such as HE protein, 3a/b protein, and

4a/b protein (Figure 1B, lower panel). All the structural and accessory

proteins are translated from the sgRNAs of CoVs.7

The genome sequence alignment of CoVs shows 58% identity on

the nsp‐coding region and 43% identity on the structural protein‐coding
region among different CoVs, with 54% at the whole genome level

(Figure 1B, upper panel), suggesting the nsps are more conserved and

the structural proteins are more diverse in need of adaptation to new

hosts. Since the mutation rates in the replication of RNA viruses are

much higher than that of DNA viruses, the genomes of RNA viruses are

usually less than 10 kb in length. However, the CoV genome is much

larger, with roughly 30 kb in length, the largest known RNA viruses. The

maintenance of such a large genome of CoVs may be related to the

special features of the CoV RTC, which contains several RNA processing

enzymes such as the 3′‐5′ exoribonuclease of nsp14. The 3′‐5′ exori-
bonuclease is unique to CoVs among all RNA viruses, probably pro-

viding a proofreading function of the RTC.12–14 Sequence analysis

shows that the 2019‐nCoV possesses a typical genome structure of

CoV and belongs to the cluster of betacoronaviruses that includes Bat‐
SARS‐like (SL)‐ZC45, Bat‐SL ZXC21, SARS‐CoV, and MERS‐CoV. Based
on the phylogenetic tree of CoVs, 2019‐nCoV is more closely related to

bat‐SL‐CoV ZC45 and bat‐SL‐CoV ZXC21 and more distantly related to

SARS‐CoV (Figure 1A).

3 | FUNCTIONS OF NONSTRUCTURAL AND
STRUCTURAL PROTEINS IN CORONAVIRAL
REPLICATION

Most of the nsps of nsp1‐16 have been reported for their specific

roles in the replication of CoVs. However, the functions of some of

the nsps are unknown or not well understood. The known functions

of the 16 nsps are summarized in Table 1.

Four structural proteins are essential for virion assembly and

infection of CoVs. Homotrimers of S proteins make up the spikes on

the viral surface and they are responsible for attachment to host

receptors.50,51 The M protein has three transmembrane domains and

it shapes the virions, promotes membrane curvature, and binds to the

nucleocapsid.52,53 The E protein plays a role in virus assembly and

release, and it involved in viral pathogenesis.54,55 The N protein

contains two domains, both of which can bind virus RNA genome via

F IGURE 1 The genomic structure and phylogenetic tree of coronaviruses. A, The phylogenetic tree of representative CoVs, with the new

coronavirus 2019‐nCoV highlighted in red. B, The genome structure of four genera of coronaviruses. Pp1a and pp1b represent the two long
polypeptides that are processed into 16 nonstructural proteins. S, E, M, and N indicate the four structural proteins spike, envelope, membrane,
and nucleocapsid. 2019‐nCoV, 2019 novel coronavirus; CoVs, coronavirus; HE, hemagglutinin‐esterase. Viral names: HKU, coronaviruses

identified by Hong Kong University; HCoV, human coronavirus; IBV, infectious bronchitis virus; MHV, murine hepatitis virus; TGEV,
transmissible gastroenteritis virus

CHEN ET AL. | 419



different mechanisms. It is reported that N protein can bind to nsp3

protein to help tether the genome to RTC, and package the en-

capsidated genome into virions.56–58 N is also an antagonist of in-

terferon (IFN) and viral encoded repressor of RNA interference,

which appears to be beneficial for the viral replication.59

3.1 | Diversity of CoV pathogenesis

Different CoVs display diverse host range and tissue tropism.

Usually, alphacoronaviruses and betacoronaviruses infect mammals. In

contrast, gammacoronaviruses and deltacoronaviruses infect birds and

fish, but some of them can also infect mammals.4,60 Before 2019,

there were only six CoVs that were known to infect human and cause

respiratory diseases. HCoV‐229E, HCoV‐OC43, HCoV‐NL63, and

HKU1 cause only mild upper respiratory disease, and in rare cases

some of them can cause severe infection in infants, young children

and elders. SARS‐CoV and MERS‐CoV can infect lower respiratory

tract and cause severe respiratory syndrome in human.56,61 Some

CoVs can infect livestock, birds, bats, mice, whales, and many other

wild animals, and they can cause great economic loss. For example, in

2016, an HKU2‐related bat CoV, swine acute diarrhea syndrome

CoV, caused a large‐scale outbreak of fatal disease in pigs in

Southern China, and more than 24 000 piglets were dead.62 This is

the first documented spillover of a bat CoV that caused severe dis-

ease in livestock.4,63

The new CoV, 2019‐nCoV, which belongs to betacoronaviruses

based on sequence analysis (Figure 1A), can also infect the lower

respiratory tract and cause pneumonia in human, but it seems that

the symptoms are milder than SARS and MERS. Up to 20 January

2020, 291 cases in total have been confirmed in China by sequence

analysis, clinical diagnosis and epidemiological examination, including

270 cases in Wuhan and 21 cases in Beijing, Shanghai, and Guang-

dong (http://www.nhc.gov.cn/yjb/new_index.shtml). In addition, four

cases were confirmed in three other countries, including two cases in

Thailand, one case in Japan, and one case in South Korea; all these

patients had stayed in or visited Wuhan 2 weeks before the onset of

the symptoms. Six deaths and 63 patients with severe symptoms

were reported in Wuhan (http://wjw.wuhan.gov.cn/). Among the six

death cases, four patients with published information are elder

people of over 60 years old and have other illnesses before the in-

fection, such as abdominal tumor and chronic liver disease, myo-

carditis and renal dysfunction, and cardiovascular disease.

Many of the patients have direct or indirect contact with the

Wuhan Huanan Seafood Wholesale Market that is believed to be the

original place of the outbreak of the 2019‐nCoV. However, trans-

mission of 2019‐nCoV from fish to human is unlikely. The 2019‐nCoV
and fish CoVs such as Beluga Whale CoV/SW1 belong to different

genera and apparently have different host ranges. As the Wuhan

seafood market also sells other animals, the natural host of 2019‐
nCoV awaits to be identified. Due to the possibility of transmission

from animal to human, CoVs in livestock and other animals including

bats and wild animals sold in the market should be constantly mon-

itored. In addition, more and more evidence indicate the new virus

2019‐nCoV is spread via the route of human‐to‐human transmission

because there are infections of people who did not visit Wuhan but

had close contact with family members who had visited Wuhan and

got infected (http://www.cctv.com/).

The major pathogenic CoVs are listed in Table 2 for better un-

derstanding the pathogenesis of CoVs.

4 | TREATMENT AND PREVENTION

At present, there is no single specific antiviral therapy for CoV and

the main treatments are supportive. Recombinant IFN with ribavirin

only has limited effects against CoVs infection.64 After SARS and

MERS epidemics, great efforts have been devoted to development of

new antivirals targeting CoVs proteases, polymerases, MTases, and

entry proteins, however, none of them has been shown to be effi-

cacious in clinical trials.65–67 Plasma and antibodies obtained from

the convalescent patients have been proposed for use in treatment.68

In addition, various vaccine strategies, such as using in-

activated viruses, live‐attenuated viruses, viral vector‐based

TABLE 1 The 16 nonstructural proteins of coronaviruses and their
functions

nsps Functions References

nsp1 Cellular mRNA degradation, inhibiting IFN

signaling

15,16

nsp2 Unknown 17,18

nsp3 PLP, polypeptides cleaving, blocking host

innate immune response, promoting

cytokine expression

19,20

nsp4 DMV formation 21,22

nsp5 3CLpro, Mpro, polypeptides cleaving, inhibiting

IFN signaling

23–25

nsp6 Restricting autophagosome expansion, DMV

formation

26,27

nsp7 Cofactor with nsp8 and nsp12 28,29

nsp8 Cofactor with nsp7 and nsp12, primase 28–30

nsp9 Dimerization and RNA binding 31,32

nsp10 Scaffold protein for nsp14 and nsp16 33–36

nsp11 Unknown 37

nsp12 Primer dependent RdRp 28,38,39

nsp13 RNA helicase, 5′ triphosphatase 40–42

nsp14 Exoribonuclease, N7‐MTase 12,43–45

nsp15 Endoribonuclease, evasion of dsRNA sensors 46–48

nsp16 2′‐O‐MTase; avoiding MDA5 recognition,

negatively regulating innate immunity

34,35,49

Abbreviations: 3CLpro, chymotrypsin‐like protease; DMV,

double‐membrane vesicle; dsRNA, double‐stranded RNA viruses; IFN,

interferon; mRNA, messenger RNA; Mpro, main protease.
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vaccines, subunit vaccines, recombinant proteins, and DNA vac-

cines, have been developed but have only been evaluated in an-

imals so far.69,70

Since there is no effective therapy or vaccine, the best measures

now are to control the source of infection, early diagnosis, reporting,

isolation, supportive treatments, and timely publishing epidemic in-

formation to avoid unnecessary panic. For individuals, good personal

hygiene, fitted mask, ventilation, and avoiding crowded places will

help to prevent CoVs infection.
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